Clinical experience with very high-pressure dilatation for resistant coronary lesions.


Author information

1 Department of Cardiology, "Santi Antonio e Biagio e Cesare Arrigo" Hospital, Alessandria, Italy. Electronic address: gioel.gabriele.secco@gmail.com.
2 University Heart Center Freiburg, Bad Krozingen, Germany.
3 NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, London, UK.
4 Department of Cardiology, "Santi Antonio e Biagio e Cesare Arrigo" Hospital, Alessandria, Italy.
5 Interventional Cardiology, "San Giovanni Bosco" Hospital, Turin, Italy.
6 Department of Cardiovascular Medicine, University of Medicine, San Martino Hospital, Genova, Italy.
7 Department of Cardiology, University of Medicine, Padua, Italy.
8 NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, London, UK; Department of Cardiology, Careggi University Hospital, Florence, Italy.

BACKGROUND:

Calcific coronary lesions can be so resistant to prevent symmetric stent dilation with high risk of ISR/thrombosis. The aim of the current study is to evaluate the safety and efficacy of super high-pressure dilatation (>30-45 Atm) using a dedicated NC-balloon (OPN, SIS-Medical-AG, Winterthur-Switzerland).

METHODS:

We retrospectively evaluated 326 consecutive undilatable lesions in which conventional NC-balloons failed to achieve adequate post-dilatation luminal gain. After the failed attempt an OPN-balloon was inflated up to achieve a uniform balloon expansion (maximal dilatation pressure of 45-50 Atm). Lesions were divided into two groups according to the final inflation pressure: Group-I: lesion responsive to 30-40 Atm and Group-II: >40 Atm. Angiographic success was defined as residual angiographic stenosis<30% assessed by visual estimation with TIMI3-flow. Procedural success was defined as the achievement of angiographic success without any MACE.

RESULTS:

Angiographic success was achieved in 97.5%, procedural success in 96.6%; 53% of the lesions were responsive to a slower inflation pressure (Group I) while in the remaining 47%, the optimal expansion required a pressure >40 ATM (Group II). In 3 patients coronary rupture occurred after balloon inflation and was successfully treated with stent implantation with a final TIMI3-flow. The OPN alone was able to achieve adequate expansion in >90%. 0.9% days MACE were reported.
CONCLUSION:
The OPN-dedicated high-pressure balloon provides an effective and safe strategy for treatment of severe resistant coronary lesions.

Copyright © 2019 Elsevier Inc. All rights reserved.

KEYWORDS:
Calcific lesions; Coronary angioplasty; Drug eluting stents; Non-compliant balloon; PCI